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NOTATION

This user's manual is designed to assist the mathematician or
programmer using the BRL Sine, Cosine, and Exponential Integral Sub-
routine. FORTRAN symbols for variables and arithmetic operations are
used in the body of the report for consistency with excerpts from the
coding.

As an aid to the reader unfamiliar with standard FORTRAN, the
following symbols are defined:

Algebraic FORTRAN

Symbol peration Notation Notation

1. + add a + b A + B
2. - subtract a - b * A B
3. * multiply a x b • A B
4. / divide a + b A/ B

Numbers are written in specific ways to define their type:

1. Integer: 2
2. Real: 2. or 2.0
3. Standard notation 2.78 x105 : 2.78 E+05

(double precision) 2.78 D+05

Accession For

NTIS GRA&I
DTIC TAB El
Unannounced El
Justification-_ -

Distribution/
Availability Codes

lAvail and/or
Dist Special

C 4I



I. INTRODUCTION

Sine and cosine integrals occur in applications of Tranter's
methodl to the evaluation of stresses in thick-walled cylinders. The
need for highly precise values of the integrals for complex argument
led to the development of this BRL subroutine. Although tables of sine,
cosine, and exponential integrals have been publiihed, these tables are
of necessity limited in scope. Moreover, interpolation between given
values in such tables results in loss of accuracy.

While computer subroutines exist for the computation of certain of

these integrals for restricted values of the argument, the authors know
of no subroutine which is valid for the wide range of complex argument
and order of the exponential integral or which has the degree of
precision of the subroutine presented in this report.

The three methods used to compute the values of the integrals are

1. Series,

2. Gauss continued fractions, and

3. Asymptotic series.

Each of these methods will be discussed in sufficient detail to enable
the user to understand the subroutine. Recourse to special multiple
precision codes or integer arithmetic has been deliberately avoided.
The goal was to provide a high degree of precision through careful
attention to analytic detail.

The subroutine has been written in double-precision FORTRAN IV and
has been code-checked on the CDC 7600. Examples run on the CDC 7600
have agreed to 25 significant digits with tables of the sine integral
generated by C-B Ling2 . (See Appendix C). Complex arithmetic has not
been used in the computer code; the annotated listing in Appendix B,
together with the analysis presented in section III, will serve to
illustrate the manner in which real and imaginary parts of the integrals
are computed. As a general rule, whenever the real and imaginary parts
of a number are stored in an array of length 2, the real part is in the
first location and the imaginary part is in the second location.

1 . J. Tranter, Integral Transforms in Mathematical Physeice, Methuen and
Co., Ltd., London, England, 1966.I. 2..

2Chih-Bing Ling, Collected Papers, Vol. II, Virginia Polyteohnio Institute
and State UniverBity, Blacksburg, VA, 1979.
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II. INPUT AND OUTPUT VARIABLES

The subroutine statement is

SUBROUTINE SCINT (X, Y, SI, CI, EX, NORDER, ICODE, IERR).

The input variables are X, Y, NORDER, and ICODE. X and Y are double-
precision real variables, while NORDER and ICODE are integer variables.
ICODE describes to the subroutine the manner in which X and Y are to be
interpreted. If

ICODE = 1, the complex argument z is x+iy
*

- 2, the complex argument z is x EXP(iy)

NORDER is the order n of the exponential integral En (z) to be computed.

The output variables are SI, CI, EX, and IERR. SI, CI, and EX are
double-precision real arrays of length 2, and IERR is an integer variable
used as an error code.

SI(l) = Re Si(z)

sI(2) = Im Si(z)

CI(l) = Re Ci(z)

CI(2) = Im Ci(z)

EX(l) = Re En (z), n a NORDER

EX(2) = Im En(z), n = NORDER

IERR a 0, no errors occurred;

a 1, input value for ICODE was not 1 or 2;

= 2, the magnitude of z was less than I.D-48, and interpreted
to be 0.;

S=3, the argument of z was 180' degrees;

a 4, the magnitude of z was negative;

= 5, negative order was specified for En(z).

It should be noted that not all of the nonzero values for IERR
indicate fatal errors. If IERR - 1 or 4, no computations are performed.
If IERR = 2 (that is, if z - 0), then the sine integral Si(O) - 0, while
the cosine integral Ci(0) is undefined. If n = NORDER - 0 or 1, E (0)
is also undefined. If n * NORDER >1, E (0) a l/(n-l). If IBRR . S, Ci(z)

4 a d En(z) are not defined for z on the Regative real axis; the values of

8
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Si(z) are computed. Finally, if IERR - 5, Bn(z) is not computed, but
Si(z) and Ci(z) are.

Appropriate error messages are printed to accompany the nonzero
values of IERR. It is necessary to declare the double-precision arrays
SI(2), CI(2), and EX(2) in a DIMENSION statement in the calling program.

III. METHODS OF COMPUTATION

A. Definitions

The sine integral is defined b'

Si(z) sn t dt (1; t
f0

for all complex z.

The cosine integral is defined by

z

Ci(z) = -Y + In z +f cos t dt (2)o t

for larg zl<w, where y = .57721 ... is Euler's constant and In z is the
complex logarithm of z,

ln z = loge Izi + i arg z. (3)

The exponential integral is defined by

E = ()- t dt (4)

for Re z > 0 and order n = 0,1,2,...

B. Series: Iz <_ 0

Series expansions for Si(z) and CiCz) are given by

9
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- Wkz2k+lSi(z) =k+l) Zk) ()
kuO

and
cc

+C (l)kz2k
Ci(z) = y + in z + C arg zi <w (6)

k=l

For the exponential integral, one has

(_l)n-In-] k 1 k k

E (z) = (n-l)! (yln z +j " k-n+lk! (7)

kjn-l

larg zi <7

Since the infinite jeries in Eqs. (5), (6), and (7) are majorized by
an infinite series for e , they are absolutely convergent throughout the
finite complex plane. The presence of the term in z in Eqs. (6) and
(7) invalidates these equations at the origin and along the negative real
axis. As IzI increases, the rate of convergence decreases. Numerical
experimentation showed agreement between the series and the continued
fractions (to be discussed next} in the region 8 Izj _ 12 to in excess
of 28 significant digits. IzI = 10 was therefore chosen as the cutoff
point for utilization of the series expansion. See Appendix D for the
derivation of these expansions.

A C. Gauss Continued Fraction: l0<Izj<_75

For the exponential integral, the continued fraction i; given by

En(z) e= e1
n'i¢ z + 1

1' +I + n + l -

1 z+'
S• , (8)

* valid for [arg zi < w. (See Appendix D)

10
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The continued fraction expansion in Eq. (8) can also be used to
evaluate the sine and cosine integrals. In particular, for larg zi <2

Si(z) = - EI(iz) - El( -iz) + j- , (9)

and

Ci(z) = - ( E1 (iz) + El(-iz (10)

(See Appendix D for the derivations.) Then using the continued fraction
in Eq. (8) to evaluate El(± iz), one obtains the values of Si(z) and

Ci(z) from Eqs. (9) and (10), respectively, for Jarg zj < and 0<cJzj<_7S.4 q7

For z such that 2--<Iarg zI< w, Si(-z) and Ci(-z) are computed, and then

use is made of the fact that

Si(z) = - Si(-z) (11)

and

Ci(z) = Ci(-z) + ir (12)

For jarg zi = 7 , a problem arises in Eqs. (9) and (10), since
either iz or -iz may lie on the negative real axis, the branch cut for
E1 (z). It will be shown in Appendix D that the continued fraction expan-

sion in Eq. (8) is still valid when z < 0, if used properly. That is,
if z is real and negative, say z = - x, x > 0, then define

El (-x) - Ei(x) + i n C131

where

Ei(x) = - P.V. e- dt P (141

-x

P.V. denotes the Cauchy principal value of the integral, and the
sign of the in term is chosen according to the following convention:

0 11
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I im+ El(-x + iy) , - Ei(x) - ir

lir El(-x + iy) - EiCx) + ii

The continued fraction expansion in Eq. (8) converges to -2i(x)
when z a - x, x < 0. Suppose, then, that z * ix, x > 0. In this case,
iz •-x, and the continued fraction converges to - Ei(x). Since z has

been rotated in the positive (anti-clockwise) sense to the negative real
axis, w is subtracted from the imaginary part of - Ei(x) (which is 0)
to provide the value of El(iz). Similarly, if z ix, then - iz -
by rotation in the negative sense, and w is added to the imaginary part
of -Ei~x) to obtain the value of El(-iz). With these conventions, Eqs.
(9) and (10) may be used to compute Si and Ci on the imaginary axis.

The value IzI = 75 was chosen as the cutoff point for use of the
continued fraction, since numerical experimentation showed agreement
between the continued fraction and the asymptotic series (to be discussed
next) to in excess of 26 significant digits in the range Izi - 73 to IzI
- 78.

D. Asymptotic Series: IzI > 75

For the exponential integral, the asymptotic series

E ~ i) 1 E-  + (n+l) n(n+l)(n+2) (16)zn(Z) zz3 - 3z z

is valid for earg zg < I n , provided that ir is added or subtracted from
the value of the series, as appropriate, when the branch cut is crossed
(see Appendix D). In particular, when z is on the negative real axis,
the series in expression (16) is asymptotic to -EiCxl, so the computation
of Si and Ci from this asymptotic series is accomplished using Eq. .91
and (10) in exactly the same manner as was described in section C for
the continued fraction.

E. Recurrence Relation for the Exponential Integral

For n > 1, it is shown in Appendix D that

1 -
En+l (z) = "e'Z-z En[z) ,C(171.

n

12
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A

for all z. This recurrence relation is stable for increasing h whenever
n < Izi, and is stable for decreasing n whenever n > IzI.

F. Programming Methods

Throughout this section, reference is made to program line numbers
which can be found in Appendix B. All computations within the subroutine
are done using the rectangular coordinate form of the complex quantities.
Since input to the subroutine may be in rectangular or polar form, lines
180 through 440 check the form of the input, and convert polar input to
rectangular form. Polar input angles are modified, if necessary, to
values greater than - 1800 and less than or equal to 1800 by adding or
subtracting an appropriate multiple of 360*. It should be noted that
input variables are not modified by the subroutine; in lines 160 and 170,
auxiliary variables are assigned.

Lines 500 through 630 comprise the series computation section. The
array TSAVE, of length 2, contains the real and imaginary parts of the
term

(z)NORDER-1

(NORDER-1)!

for use in the exponential integral in lines 620 and 630. In lines 580
through 610, the terms of the summation in the quantity

NORDER-1

- - ln Izi + 1/I

are computed.

Lines 660 through 880 make up the continued fraction section. The
first call to subroutine CONTFR (line 670) is to compute the value of
E (z), n = NORDER, z input. Lines 680 through 760 compute E(iz) for use

n 1
in Eqs. (9) and (10), as described in section III C. If z lies in the

4 '4t right half-plane (line 690), z is rotated 90* in the counterclockwise
sense by setting XT = - Y and YT =X. That is, if z = X + iY, then iz
- Y + iX (lines 730 and 740). If z is in the left half-plane or on the
imaginary axis, z is replaced by - z before rotation by ± i (lines 700
through 720). Subsequent to the computation, Si and Ci are modified in
accordance with Eqs. (11) and (12) of section III C (lines 810 through
880). Having computed E1 (iz) in line 750, iz is converted to -iz in

lines 770 and 780, and E1 (-iz) is computed in line 790. If the input

value of Z was imaginary (X = 0), then either YT (line 740) or YT (line
780) will be 0 with the corresponding XT being negative. As described

13
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in section III C, the imaginary part of the computed E1 is modified by
t n, as appropriate, in line 760 or in line 800. Lines 810 through 840
apply Eqs. (9) and (10).

The asymptotic series computation section is in lines 900 through
1130. The first call to subroutine ASYP (line 920) computes N(z), n w
NORDER, z input. Lines 950 through 1130 implement Eq. (9), (10 , (11),
and (12) exactly as described in the continued fraction section above,
except of course that subroutine ASYMP is called instead of subroutine
CONTFR.

Lines 1160 through 1510 make up the error handling section of the
subroutine. For details, see the description of IERR, section II.

Subroutine SERIES is comprised of lines 1640 through 2380. The
arrays PSS(100,2), PSC(100,2), and PSE(200,2) are used to store the
computed terms of the series for SI, CI, and En, respectively. The first
index is in each case the term number; the second index corresponds to
the real (1) and imaginary (2) part of the term. The terms are computed
in descending order and summed in ascending order, to minimize round-off
error. For the range of application of the series representations, the
terms are monotone decreasing except for perhaps the first two or three
terms when Izi > 6, and hence it is unnecessary to sum the series from
two directions.

For SI and CI, one requires terms of the form

(l)nz2n
(2n) (2n) :

and

(_)n 2n+l
(2n+l) (2n+l)!

I

respectively. Letting z-X + iY, these terms are computed as follows:
*ii

! m
Z-1 -FACTR + i FACTI

(-)n _ SW

m = EM

14
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In line 1740, EM is initialized as l.DO, and in lines 1760-1770, FACTR
and FACTI are initialized as X/EM and Y/EM, respectively. SW is initially
given the value + l.DO (line 1800). Lines 1820 through 2220 make up the
computational loop. The terms for SI are computed first (lines 1830-
1840) as

SW*FACTR/EM

&I
and

SW*FACTI/EM

EM is incremented by l.DO in line 1940, The sign of SW is changed in
line 1950, and FACTR+iFACTI is multiplied by X/EN + i Y/EM (lines 1970-
2010). The terms for CI are then computed in lines 2020-2030 as

SW*FACTR/EM

and

SW*FACTI/EM

EM is again incremented by l.DO (line 2150), and FACTR+iFACTI is multi-
plied by X/EM+iY/EM (lines 2170-2210). Note that the sign of SW is not
changed this time, since the next term in the series representation for
SI has the same sign as the term just computed for CI. The loop index
increments, and the next term in the series representation for SI is
computed.

Computation of the series representation for En requires terms of;,,,• ithe form

(-l)mz
(m-n+l)(m!)

Again letting z=X + iY, these terms are computed as

z FACTR+iFACTI

15
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(-l) = ESW

m = EM

n-l = EXFACT

= EXCOEF
m-n+1

Since the series representation for E contains terms both even and odd
powers of z, two terms of the series ior En are computed each time
through the loop. (Hence the dimension PSE (200,z)).

As indicated elsewhere, the array TSAVE, dimensioned 2, holds the
* real and imaginary parts of the factor

,(_ln-lzn -I

(n-l!

used in the series for E (Z). If nul, TSAVE(1)=l.00 and TSAVE(2)u0.DO,
the values given these variables initially in lines 1780-1790. Once
into the computational loop, so long as mon-l, that is, EM EXFACT
(lines 1850 and 2040), the terms PSE are computed as

ESW*EXCOEF*FACTR

and

ESW*EXCOEF*FACTI

The sign of ESW is changed after each such computation, and FACTR and
s"FACTI are modified as described above.

If m=n-1, that is, EM = EXPACT, the term in znl is omitted from

the summation, so that PSE=0.DO (lines 1880-1890 or lines 2070-2080).
In this case,

* TSAVE(1=-ESW*FACTR

16
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and

TSAVE(2) =-ESW*FACTI

(lines 1860-1870 or lines 2050-2060). The minus sign occurs because the
loop computes terms of the series

z (-l)zk kZ

- a (k-n+l)k! E (k-nllk:
k=O k-0
k~n-l k~n-I

and TSAVE is required to have the value

k Zk
k!

where k=n-l.

The variable TERM is

m
z
M!

A and is computed in line 2130. When TERM < EPS, the computation loop is
4 "exited (line 2140). Note that if N < NORDER, the loop is not exited,

since in this case TSAVE has not yet-been computed. In any event, no
more than NORDER+l terms (NMAX) are computed. If, after NMAX terms,
TERM is not less than EPS, a message is printed (line 2230). In lines
2250 through 2340, the terms are summed. If NORDER;I, the first term
in the series representation is EXPACT, which is added to EX(l) in line

f2350.
Svbroutine CONT R is in lines 2390 through 2680. This subroutine

computes the 2*NMAXth convergent of the continued fraction in Eq. (8),
where NMAX=100. The variable ADD, initialized to NMAX in line 2420,
will take on the values 1 to NAX, in descending order. The variable

* ' ADDZ, initialized to NORDER NMAX in line 2430, will take on the values
* NORDER to NORDER+NMAX, in descending order. W(.1 and WC21 are the real

and imaginary parts, respectively, of the value of the convergent at
& each stage of computation. W(1) iW(2] is initialized to the value
f (NORDER+NMAX)+iO.DO in lines 2440-2450.

17
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Lines 2460 through 2560 comprise the main computational loop.
z-X+iY is added to W(1)iW(2) in lines 2470 and 2480. V(1+iW(2) is
inverted by writing

.DO/(W(1)iW(2)) - W(1)/R- iWC2/R,

where RuW()*W(1)+W(2) *W(2)

R is computed in line 2490, and in lines 2500 and 2510, the new values
of W(I) and W(2) are computed by inverting, multiplying by the current
value of ADD, and adding l.DO.

Next, ADDZ is decreased by l.DO, and new values of W(l) and W(2)
are computed by inverting and multiplying by the current value of ADDZ.
Finally, ADD is decreased by l.DO and the loop begins again. After the
final pass through the loop, W(l) and WC2) contain the real and
imaginary parts, respectively, of

NORDERW = +
1 NORDER+l

I +2
Z+

1
z NORDER+?4AX

The desired convergent is

1
. ~Z+W

so, in lines 2570 through 2610, z is added to W and the sum is inverted.
In lines 2620 through 2660, this result is multiplied by

z'I e - X- i Y

-x -

euO cos Y - ie Xsin Y.

Subroutine ASYMP is in lines 2690 through 3120. As in subroutine
SERIES, the values of the terms are saved in the PSE array, and are
sumed in descending order of the index. As in subroutine CONTPR, only

18
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the function En is computed. The asymptotic expansion requires terms of
the form

(-1)k -l (n)(n+l)(...)(n+k-2)

k

for k=2,3,..., NMAX. 4

These terms are computed in the DO-LOOP in lines 2840 through 2950.
The Nth term is obtained from the previous one by multiplying by -

(NORDER+N-I) and dividing by z (lines 2850 through 2870). TERM is the
magnitude squared of each term; the computation loop is exite4 prior to

*the computation of all NMAX terms if TERM is larger than IzL-4, or if
TERM is less than l.D-44.

The terms are summed in reverse order in lines 3000 through 3050.
To these sums is added z- 1 Clines 3060 and 30701, after which they are
multiplied by e-z (lines 3080 and 3090).

IV. CONCLUSIONS

The accuracy of the derivation and coding of the computational
formulas used in this subroutine has been carefully checked. Because
sufficiently precise tables are not available, the only means of checking
the subroutine for complex z is through alternate computational methods.
As has been noted, agreement between series, continued fraction, and
asymptotic expansion in their regions of overlap provides some degree of
verification. In certain parts of the complex plane, the functions have
known values with which the subroutine may be compared. For example, on

4 the imaginary axis, Re Si(z) = 0 and Im Ci(z) = ± , precisely the

values given by the subroutine in verification runs. Some precision
estimates are given in Appendix A.
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APPENDIX A

PRECISION ESTIMATES

A full discussion of error analysis and alternate means of computat-
ion of Si, Ci, and En will be the subject of a future report by the
principal investigator. Preliminary results show that evaluation by
Gaussian quadratures agrees with the values obtained by the continued
fraction to 27 significant digits in double precision CDC FORTRAN.
Applications of the recurrence relation (equation 17) for En(z) in a
Miller-type algorithm have revealed similar agreement with the series
computations and the asymptotic expansions.

Internally, the subroutine determines the limits of computation as
follows: the series computations are stopped when the magnitude of the
last computed term is less than 1.D-144, or when 100 terms have been
computed, whichever comes first. The continued fraction computes the
100th convergent. This value was found to provide the most stable
results in the range of application. The asymptotic expansion is term-
inated in one of three ways: when 200 terms have been computed, when
the magnitude of the last computed term was less than l.D-144, or when
the magnitudes of the computed terms reach a minimum.

Internal computations are performed using the rectangular coordinate
form of the complex quantities. For this reason, the output of the sub-
routine will be inherently more precise when the input is in rectangular
form. For example, an input of X-0, Y-A, ICODE-l, will produce better
results than an input of X-A, Y-90', ICODE-2, because of both the

truncation error involved in converting 900 to T radians, and the
subsequent buildup of errors due to the fact that the computed value of
X may not be identically 0.
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DERIVATIONS OF THE COMPUTATIONAL FORMULAS
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APPENDIX D

DERIVATIONS OF THE COMPUTATIONAL FORMULAS

The series expansions in Eqs. (5) and (6) are derived from term-
by-term integration of the series expansions of the integrands in the
integrals in Eqs. (1) and (2), respectively.

From Eq. (1),

S1 - k 2k+l
Si(z) 1- (2) r dt

fl t t(2k k) d
0 k=O

k=O

(-lk2k+l) f

= (2k+1)(2k+l)

k=O

Similarly, from Eq. (2),

Ci(z) - y - in z f E (-1) kt 2k
t (2k)!

(2) t2k

000 ()kt2k

(2) = 2k dt

k= k=

_
- 1) k 2k 2k-i

~k=l

;" = Z -1) k 2k

- (2k)(2k)!

k=l
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Im
To derive the series expansion in Eq. (7), one proceeds as follows:

from Eq. (4),
E(z) e =

J e d

It is known 3 that Euler': constant y is given by

f t f t
01

Thus

y 1 e-t d z -t dt -t d
t t t

o 1

I ji i.-. dt - f -. dt E E(Z)

'1 01

provided z is not on the negative real axis or at the origin. Then

'I .1 -tf'-
E (Z) -y + L- dt - J t- dt

0 1

3 . .W i t k r ad . .W t o , A C u se o o e nA a y f

Camnbridge University Press, London, 2827, p. 246.
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(Z) i +dt 1 -ljk dt
El(Z) t I k - I - kkud

k 4k-
= f - k-dt - -dt - k-1t d

k=l 0 1 d!

k=l

or,

E1 (Z) =- y - In z -

k=k

Starting with the integral in Eq. (4), an integration by parts

yields the recurrence relation of Eq. (17):

ezt t  e_ zt tl-n t= i zt e t

1 Lt=lI

A -- -e -  -zt
- z e J -dt

i~i- f n- -1 -I r

provided n > 1. That is,

E, Z 1 [e- z E n-1(z)* j En(z) = n±---- z - z .1 z)

From the series expansion for El(z) and the recurrence relation in
Eq. (17), one can derive the series expansion for En (z). To this end,

* apply the recurrence relation (n-1) times:

,* 60
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HLi

E n(z) n [e-Z-z E (z)]

e- z z 1
n-I nT -72 R-2 E n-2 (z)

-z [-z z2 "e-z  zE(z

n-I (n-l) (n-2) +  (n-i) (n-2) n-3 n_3

S0e-z (-lz 1 z 1) 2e-z

(n- 2) + 0-(n-2) (n-3) +

(_,)n-2 n-2 e-z (_)n-iz n-1

+ (n-l) (n-l)

Expanding each of the e-z terms in a power series, and using the series
expansion for El (z),

k+1 0k1 k+2 k+2
____ E -1) _______k_1_D___n(Z) + (n-1)(n-2)k! + __(n-1)(n-2)(n-3)k!

k=O k=O k=O

0 (-1) k+n-2 k+n-2

(n-l)! k!
. k=o

_,l)n-1izn-l kZi

(n-i)! l~-n z k-k
k=l

4

Redefining the indices of summation, and collecting all terms with z

kzk + (-l)kzk
En(Z) + (n-l) (n-2)(k-1)T

k=O k-i
kn-I k~n-i

(Equation continued on next page)
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(lkz k  "lk k

(n-i) (n-2) (n-3) (k-2 "") ! lkn.,.2)

k=2 kun-2

kjn-1 knn-I

..
" (n-i)! Y-I

k zk

(n-l) !(k-n+l) (k-n+l)!
k-n

From this last equation, one sees that the only contributions to
powers of z less than (n-1) come from the first (n-1) series. In particular,
for any integer X such that 0 < L < (n-2), there are (L+i) terms with zi
given by

(n-1)! +(n-1)n-2)(1-l)! +'''+ (n-1)(n-2)...(n-l)(O)!

Repeated factoring of the expression above in braces yields

(-l) zt _ -n+l + (I-n..l L!(I-n+1) i: ( -n~l) ! n- + (n-1)(n-2)+' (n-1)(n-2)...(n-Z)(n-1-l)

(-l)I z __-nl +1• ;(1,-n+1)1! n-1 (l n- n-3

+ ~- n--l k-l~+1 ( " 5 1+ 2 (1+

* ISince

I +2 ~+ i 1+2;,1+n-1 n-1- n-1

(Equation continued on next page)
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=I

1+2

n-L-

one sees that the factored expression compresses to

(-nl l -n+l -n
(L-n+l)M! n-12

(L-n+1)9! n-I n- -1

- (-1) z
(t-n+l) '

Using this result in the previous equation,

n-1 n-i k
(n-l)! : - (k-n+l)k!

Sk= kO

k z k + (-I) kzk
h... (n-l)k! (n-l)(n-2)(k-l)! -°

k=n k=n

! . + _,_-_._ l~z

* i k=n k-n

In the series in this equation, the terms involving z , where L > n, may
be treated in a manner analogous to the terms for which I < (n-2). Collect-
ing these last n series, one has
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ik k ~I1

+ (n-i)! (k-n+2)! (n-i) (k-ne.) (k-n+i)!

(- lk! n-i W-2 n-3

+k-n+4 k-n+3 (kn2)
+ 1j~+i( k 1

+1kz k-n+4 ~ (( 1c~ + )))L 1

1 (k-n+i)k! n- -2n

(-l z k-n~i 1 -n

k=n T1k

44

Thus finally, the series representation for

E n (z) is- given by
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E Z (,n-1i n-1i I + cc (-I) k zkk
n(n-1) k) ykn+ - n1) ~

k=1 ' k=O
kVn-1

which is Eq. (7).

The continued fraction of Eq. (8) is derived from the Gauss continued
fraction by a method found in Wall 4. The Gauss continued fraction is given
by

F(a,b+1,c+l;z) -1

F(a,b,c;z) a(c-b)
-c(c+1) 

Z

(b+l) ( -+l)

-(c+l)(c-) Z

1 (c+2)(c+3)

where F(a,b,c;z) is the hypergeometric function,

F(a,b,c;z) E a b)k ~k

k=O (~k

~: and
(a r(a+k)
(k r(a)

-the quotient of two gamma functions.

*If, in the series for the hypergeometric function, one replaces z
by - cz and takes the'limit as c -~~the divergent series

4 4H. S. Walt,.Continued Fractions D. Van Nostrand Co., Inc., New York,
* 7 1948,. pages 336-352.
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2

-a(a+l) (a+2) (b) (b.1)(b+2) ..- 4.

is obtained. Using the same transformation and limit in the continued
fraction of Gauss,

g2(a,b+l;-z) 1
11(ab;-z az

1+ .1l~

1+

Using the divergent series for D,

I2
a(a,b;-z) 1 -abz + a(a+l)(b)(b.1) L-- -..

=r(a) + r(all (-b rix+2 (b\ 2

eu ) Zu +- T~ z7 j eu d.

+ (a) ( ) 2 f J~a~d
00

=~2 rz) u+d

66
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r~a~l Ou (l+zu)-b e-Uua-ldu,

where use has been made of the binomial coefficient

k! k-j-I

Cj-k)!(k!) k (,1 1

and of the integral representation

r(p) f e-UuP-ldu.

It follows that

cou a-1

e u ai du

Q(a,b+l;-z) _ o (l+zu)b+d

0 (a,b;-z) - 1

f e u bdu
0 (i+zu)b

Choosing b=O and using the continued fraction expansion for the quotient
on the left,

• I ? -u a - I
1 f e uai 1_ _ _

r J(a) (l+zu) du = 1+ az

f T1+1+ 1 + 4I (a+1) z

+2z
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Since fl(a,b;-z) slba-)

TT I (i+zu)b e ~ua-1idu
fi

- 1b (1+zu)- a eu ~ub-i du.

Setting b=l,

e___ du-ua- du

j eL adu=FzT lz
0

1 az lz
1 + (a+i)z

1 +

It can be shown that the integrals in this last equation converge

for all values of z not on the negative real axis. Replace z by - in the

first of these integrals and let t = 1 +H.

-u d z

f e 1 a u zeZ e -t
0 (1 + Lu)

or, on letting a n i,

E (Z)_____ __n 1 + fl/z
l/Z

1 + ni/
14+

1+.
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This continued fraction may be 
simplified to the form

E (z) = e-
n n

Z +
11 +n+1

Z +

for larg zi < , which is Eq. (8).

To derive Eqs. (9) and (10), note 
that for

larg zl< -

El(iz) = e-t dt

iz

= f -e d(iu)

f iu

z

I - (cos u - i sin u) du

z

Co u du- i sin u du

z z

Now

OD 
z

sin u sin u d sin uId du = s u - du

- - Si(z)
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Moreover,

Ci(z) cost-i dt + y + In z
t

£ z
Co t Cst

C cost-I I cot-i st d t dt + + In z

S d 1d

• d + +In z =-Cos +

f 1+ I dt - f dt In c os t dt0 t- t(l~t) dt f -- f In

The first term in square brackets above tends to 0

as s - , since
5

- -cost dt

Si TiThe second term in square brackets is

if 5• I I dt d
i" " - + dt + -+ In z - - - Ins - In z + In z

5W. Magus, F. Obrhettinger and R.P. Soni, Formulas and Theorems
for the SpeciaZ Functions of Mate ticaZ Phkyaioe S-pi Veag,
Ne'w) York, 1986, page 36.
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in(i+s) + in I. +In s in T+-3

and

S 1lim in li urn 1 0nu .
S4 +s1+

Therefore,

Ci(z) co I dt,f tz
so that

E (iz) =-Ci(z) + i Si(z) -

Using Eqs. (11) and (12), it follows that

E (-iz) =-Ci(-z) + i SI(-z) - IT

-- Ci(z) + iff - i Si(z) - I

4 -Ci(z) - i Si(z) + lj7

Hence,

Si(z) = -[E,(iz) -Ei(-iz)]+

and

Ci (Z) [E (iz + El (-iz)]
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proving Eqs. (9) and (10).

It remains to derive the asymptotic expansion for E (z). To this
end, rearrange the recurrence relation in Eq. (17) in the form

En W - - nEn (Z)
n z n+l

and use it repeatedly:

En(Z) = e e-( (Z +)E (Z)

e- + n(n+l)
ze- z +2 ( z

-Z n(n e
e 1 + n [I.)[ -Z-(n+2)En 3 (zz Z ze- z n3

=_n + n(n+l) n(n+l)(n+2) En(z

zz 22 -Z n+3(z)z z e

e n + n(n+l) n(n+l) (n+2) +
z 11- z2 3= - - z2  z3  '

l "+ n~n+l) (... )(n+ N) E ()

+ N e - z En+N+l (z)

2, Therefore,

E (z) ( - n(n+l) n(n+l).(n+2) .
. n z z 2  z

This derivation is equivalent to repeated integration by parts starting
with the integral in Eq. (4). (see, e.g., Olver6 , page 67).

6F. W. J. Olver, Asymptotics and Special Functions, Academic Pree8, New
York, 1974.
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All of the computational formulas used in this report can be found
in reference 7. It should be noted that this reference contains several
other computational formulas which would, at first glance, seem to
provide a more simple means of evaluating Si and Ci for large Izj than
the method used in this report. In particular, the sine and cosine
integrals may be written in terms of the auxiliary functions

0 -zt
f(z) f e dt

and

te- Zt
g(z) f dt.t2+1

0

The functions f and g have asymptotic expansions which are easily derived,
but which fail to represent Si and Ci correctly on the imaginary axis.
This problem will be examined in more detail in a subsequent report on
verification of the present subroutine.

,M. Abramowitz and I. Stegun, editors, Handbook of Mathematical
Functions- National Bureau of Standards, U.S. Dept. of Commerce,
1965.
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USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out
this sheet and return it to Director, US Army Ballistic Research
Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground,
Maryland 21005. Your comments will provide us with information
for improving future reports.

1. BRL Report Number

2. toes this report satisfy a need? (Comment on purpose, related

project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information
source, design data or procedure, management procedure, source of
ideas, etc.)

4. Has the information in this report led to any quantitative
savings as far as man-hours/contract dollars saved, operating costs
avoided, efficiencies achieved, etc.? If so, please elaborate.

S. General Comments (Indicate what you think should be changed to
make this report and future reports of this type more responsive

4 ' to your needs, more usable, improve readability, etc.)

I
6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,t iplease fill in the following information.
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Telephone Number:
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